
IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 6, DECEMBER 2018 1409

An End-to-End Approach to Self-Folding
Origami Structures

Byoungkwon An , Shuhei Miyashita , Member, IEEE, Aaron Ong , Student Member, IEEE,
Michael T. Tolley , Member, IEEE, Martin L. Demaine, Erik D. Demaine, Robert J. Wood, Senior Member, IEEE,

and Daniela Rus , Fellow, IEEE

Abstract—This paper presents an end-to-end approach to au-
tomate the design and fabrication process for self-folding origami
structures. Self-folding origami structures are robotic sheets
composed of rigid tiles and joint actuators. When they are exposed
to heat, each joint folds into a preprogrammed angle. Those folding
motions transform themselves into a structure, which can be used
as body of 3-D origami robots, including walkers, analog circuits,
rotational actuators, and microcell grippers. Given a 3-D model,
the design algorithm automatically generates a layout printing de-
sign of the sheet form of the structure. The geometric information,
such as the fold angles and the folding sequences, is embedded in
the sheet design. When the sheet is printed and baked in an oven,
the sheet self-folds into the given 3-D model. We discuss, first, the
design algorithm generating multiple-step self-folding sheet de-
signs, second, verification of the algorithm running in O(n2) time,
where n is the number of the vertices, third, implementation of
the algorithm, and finally, experimental results, several self-folded
3-D structures with up to 55 faces and two sequential folding steps.

Index Terms—Cellular and modular robots, printable origami
robots, self-folding, smart actuators.

I. INTRODUCTION

FOLDING is a method to transform a device during or after
fabrication. The foldings on a structure or a machine can

Manuscript received February 3, 2017; revised September 1, 2017; accepted
November 1, 2017. Date of current version December 4, 2018. This paper
was recommended for publication by Associate Editor K.-J. Cho and Editor C.
Torras upon evaluation of the reviewers’ comments. This work was supported in
part by the National Science Foundation under Grant EFRI-1240383 and Grant
CCF-1138967. (Corresponding author: Byoungkwon An.)

B. An is with the Computer Science and Artificial Intelligence Labora-
tory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA,
and also with Autodesk Research, San Francisco, CA 94111 USA (e-mail:,
dran@csail.mit.edu).

S. Miyashita is with the Computer Science and Artificial Intelligence Labo-
ratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA and
also with the Department of Electric Engineering at the University of York,
York, YO10 5DD, U.K. (e-mail:,shuhei.miyashita@york.ac.uk).

M. L. Demaine, E. D. Demaine, and D. Rus are with the Computer Science
and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA 02139 USA (e-mail:,mdemaine@mit.edu; edemaine@mit.edu;
rus@csail.mit.edu).

A. Ong and M. T. Tolley are with the Department of Mechanical and
Aerospace Engineering, University of California, San Diego, CA 92093 USA
(e-mail:,aco002@ucsd.edu; tolley@ucsd.edu).

R. J. Wood is with the School of Engineering and Applied Sciences and Wyss
Institute for Biologically Inspired Engineering, Harvard University, Cambridge,
MA 02138 USA (e-mail:,rjwood@eecs.harvard.edu).

This paper has supplementary downloadable multimedia material available
at http://ieeexplore.ieee.org provided by the authors.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2018.2862882

Fig. 1. Self-folding Stanford Bunny. (Top-left) Input 3-D graphic model.
(Top-right) Three-dimensional self-folded structure. (Bottom) Frames from the
experiment of self-folding by uniform heating. The time elapsed since exposure
to uniform heating is indicated in the lower-right corner of each frame (in
minutes and seconds).

yield the dimensional transformation of the device (see Fig. 1),
such as a 2-D sheet of paper folding into a 3-D origami artwork,
or the solar panels of a satellite unfolding on its orbit to make
a wide 2-D surface receiving sun light. Folding is widely used
for engineering applications, including space projects [1],
[2], soft-robots [3], microscale fabrications [4], [5], and
microrobotics [6]–[8]. Folding is also found in the nature, for
example, in insect wings [9], leaves [10], [11], and proteins [12].

Self-folding origami structures are robotic sheets composed
of tiles and joint actuators [13], [14]. They are developed to
simplify the folding process of folding-based designed devices.
Each joint actuator holds the neighbor tiles [15]. When the
joint receives a signal, it folds the neighbor tiles into a pre-
programmed angle. These local foldings yield a global trans-
formation of the sheets [16]. Self-folding origami structures

1552-3098 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1824-7688
https://orcid.org/0000-0002-9795-9247
https://orcid.org/0000-0002-0088-3996
https://orcid.org/0000-0001-7821-7777
https://orcid.org/0000-0001-5473-3566
mailto:dran@csail.mit.edu
mailto:shuhei.miyashita@york.ac.uk
mailto:mdemaine@mit.edu
mailto:edemaine@mit.edu
mailto:rus@csail.mit.edu
mailto:aco002@ucsd.edu
mailto:tolley@ucsd.edu
mailto:rjwood@eecs.harvard.edu

1410 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 6, DECEMBER 2018

Fig. 2. Visual overview of the self-folding origami development process. Two examples are self-folding bunny and egg.

by uniform heat receive heat as a signal. When the sheet is uni-
formly exposed to heat, the actuators fold the sheet into the target
robotic devices, such as printable robots [17]–[19], sensors [20],
and microscale grippers that hold a single cell [21]. Because 2-
D fabrication processes are used for making 3-D self-folding
robots, the process of fabricating complex structures becomes
relatively simple. A self-folding sheet transforms itself into ar-
bitrary 3-D surfacial shapes on-demand. This process enables
rapid prototyping with a relatively lower fabrication cost.

Folding fabricated robotic sheets into 3-D devices is relatively
easy and simple because the general controllers and planners for
the sheets have been studied. However, the design and building
process of origami robotic sheets is difficult. This study aims to
develop an automated design and fabrication process for self-
folding origami robots. We explore an end-to-end approach,
including an algorithm and a system that automates the design
and fabrication. Given 3-D input models, the algorithm outputs
the layouts of the self-folding origami. By printing the algorith-
mically designed layouts, the user builds robotic sheets. Upon
being baked in an oven, these sheets transform into physical
devices (see Fig. 2). We also develop a new method and algo-
rithm to control the multiple-step folding by uniform heat. The
edges of the sheets have predefined folding temperatures. This
allows us to create 3-D devices that require multiple folding
steps, advancing the prior work that supported only single-step
self-folding [22].

Our contributions include the following:
1) a new method for achieving multiple-step self-folding un-

der uniform heat;

2) a design algorithm that takes a 3-D model as an input and
computes layouts of single- or multiple-step self-folding
sheets in O(n2) time, where n is the number of vertices
in the 3-D model;

3) an implemented design automation software system in-
cluding the design algorithm;

4) demonstration of automatically designed self-folding
sheets. The self-folded models are comprised up to 55
faces, and the sheet is self-folded in up to two steps (See
supplemental videos S1 and S2).

The remainder of this paper is organized as follows.
Section III describes and analyzes its model for self-folding
origami. Section IV describes the design algorithm. Section V
discusses the system implementation. Section VI explores the
experiments. Section VII discusses the lessons learned and op-
tions for future research.

II. RELATED WORK

A. Programmable Matter by Folding

Our prior work introduced universal self-folding devices
called programmable matter by folding [13], [15]. We used
a box-pleated crease pattern, which is a universal crease pat-
tern [23], to transform a sheet of special material into any shape
composed of O(n) cubes, where n is the length of the side.
Its reprogrammability (reusability), folding planning, program-
ming methods, and design and programming automation have
been studied theoretically and experimentally [13], [15], [16].

AN et al.: END-TO-END APPROACH TO SELF-FOLDING ORIGAMI STRUCTURES 1411

While general folding theory and algorithms for creating fold-
ing patterns have been studied for decades, design theory and
algorithms for the self-folding origami using a uniform energy
source is a recent direction of research interest. Various com-
putational origami designs are introduced in [23]–[29], and the
theoretical and experimental complexity of folding patterns are
discussed in [13] and [30]. This paper introduces a design algo-
rithm and its verification as well as a compilation-like approach
to automate fabrication of self-folding origami.

B. Self-Folding Materials

The self-folding technique has been developed in a broad
spectrum at the micrometer scale [31], [32], the millimeter
scale [33], and the centimeter scale [34]. There are various self-
folding materials that work with heat [19], [20], [35], [36], [20],
electronics [17], light [37], cells [38], surface tension [39], and
microwaves [40]. Recently, a 3-D printing technology has been
proposed as an on-demand synthesis method for self-folding
shape memory polymers (SMPs) [41], [42]. As a result, the
complexity and scale of the fabricated structures has increased,
and the development of the computational methods have be-
come more important. In this paper, we explain the theoretical,
system, and experimental aspects of our computational meth-
ods. We develop an algorithm to automate the design of sheets
that will self-fold as a specified geometric shape. Furthermore,
we develop a new method for multiple-step folding (sequential
folding). We implement the algorithms as a software pipeline.
We performed experiments with two selected self-folding ma-
terials reacting to uniform heat from our prior work [35], [36].

C. MultiStep Self-Folding

Most origami shapes are made using multiple folding steps.
This process is called sequential folding. For each fold step,
some hinges rotate from their original fold angles to other fold
angles. Multiple-step folding allows to share some space for
the hinge rotations because, after every fold step, the folding
trajectory is cleared for the other hinges’ trajectories. To con-
trol the folding trajectories of self-folding origami sheets, we
introduced a fold planning algorithm [16] that determines an
optimized folding sequence of a paper piece to achieve a given
(or multiple given) origami structures, one or many desired
origami shapes. The multiple-step folding plan, which the al-
gorithm built, was implemented with a self-folding sheet [13].
The optimized plan was compiled to a flexible electronic circuit
while the fold sequence was manually controlled with a switch.
By transferring energy to selected folding hinge, the hinge was
triggered by the electrically produced local heat [17], [18]. This
paper introduces multiple-step self-folding origami sheets that
fold into users’ desired shapes with multiple fold steps with no
manual intervention. The self-folding sheets work with uniform
heat, no on-board controllers, and no local heat control.

III. MODELS AND DEFINITIONS

A uniform heat self-folding sheet is defined as a crease pat-
tern composed of cuts (outlines) and folding edges (hinges), as

Fig. 3. Visualized self-folding crease pattern representing a bunny shape (left)
and an egg shape (right). The solid lines are cuts and the dashed lines are edges
(hinges). Each edge contains a fold angle.

Fig. 4. Three self-folding origami with one, two, and three self-folding (hinge)
actuators. The arrows show the shrinking directions. (Top row) Origami patterns.
(Middle row) Initiation fold states. (Bottom row) Final fold states.

Fig. 5. Structure of self-folding actuator model.

shown in Fig 3. Each edge contains a fold angle and folding
group. All the edges of the sheet are controlled using global
signals such as uniform heat. The folding group is identified by
a predefined temperature, and when a folding group signal is
transmitted to a sheet, the edges in the folding group simulta-
neously fold themselves. Then, when the signal for the second
folding group is transmitted to the sheet, the edges of the sec-
ond group fold. For example, when the uniform heat temperature
surrounding a self-folding sheet is 60◦, all the edges of the 60◦

group are self-folded, and when the uniform heat temperature
reaches 120◦, all the edges of the 120◦ group are self-folded.

A. Fold Angle

In this paper, a folding actuator is composed of three layers
(see Figs. 4 and 6). The top and bottom layers of the actuator
are heat resistant materials, while the middle layer is a shrinking
material. Since all layers are firmly attached to each other, when

1412 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 6, DECEMBER 2018

Fig. 6. Self-folding actuator models with three fold angles. (Left) before
activation and (Right) after activation. The arrows show the shrinking directions.

the actuator is exposed to heat, a section of the uncovered middle
layer shrinks, allowing the hinge to fold. The size of the folding
angle is controlled by the size of the gap (see wt , wb in Figs. 5
and 6)

The middle layer is made of a shape memory polymer (SMP),
which has the property of shrinking in the presence of heat. The
top and bottom layers of the composite are the structural ele-
ments of the object and can be made out of any structural mate-
rial. We used polyvinyl chloride (PVC), prestrained polystyrene
(PP, the material used in the children’s toy “Shrinky Dinks”),
and polyolefin (commonly used for shrink wrap) for the middle
layer. We used polyester sheets and paper for the top and bottom
layers.

The fold angle of each edge is encoded in the geometric
structures of the hinges. Fig. 4 shows simplified models of self-
folding sheets. The gaps wt , wb of the top and bottom layers
determine the fold angles and directions (see Fig. 6). For exam-
ple, if the gap [see Fig. 6(a)] is wider than the gap at another
location [see Fig. 6(b)], the former [see Fig. 6(a)] folds to a
greater extent. If the gap of the bottom layer is wider than the
gap of the top layer, the actuating edge bends in the other direc-
tion [see Fig. 6(c)].

B. Time Step

We achieve sequential folding by using a multimaterial
shrinking layer that is segmented into several regions, each ca-
pable of shrinking in a different temperature range. This layer
is placed on the middle of the multiple-step self-folding sheet,
and transforms uniform heat to fold angles of the hinges. In
other words, each material shrinks sequentially after a material
finishes the shrinking. While the temperature increases, differ-
ent regions of the middle layer shrink at different times. Fig. 7
shows an example. The left and right edges of the self-folding
sheet are placed on material 1, reacting to 60 ◦C. The two mid-
dle edges are on material 2, reacting to 110 ◦C. When this sheet
is baked in the oven, the two outside edges fold first, and then
the inside edges fold. We demonstrate this multimaterial middle
layer by manual building with jigsaw-puzzle-like placement. A

Fig. 7. Self-folding sheet with two-step folding. The middle layer is composed
of two different materials: Material 1 reacts at 60 ◦C and material 2 reacts at
110 ◦C.

multimaterial printer, like MultiFab [43] or Objet Connex 500,
can be used to automate this fabrication.

IV. DESIGN ALGORITHM

The multistep self-folding origami design algorithm converts
a shape represented as a 3-D mesh1 or a 3-D origami model2

into a self-folding origami design, which is the structural layout
of the self-folding origami. Just as the crease pattern of an
origami model contains the information required to produce a
folded origami object, a self-folding origami design contains
information to fabricate a multistep self-folding origami. The
design is composed of the layers’ layouts of the self-folding
origami. The self-folding origami can be printed or fabricated
according to the design.

The algorithm compiles an input model to the self-folding
origami design with the following phases (see Fig. 8):

1) unfolding a given 3-D mesh;
2) computing fold angles;
3) constructing a self-folding crease pattern;
4) constructing a self-folding origami design;
5) drawing a self-folding origami layout;
6) compiling time-step information to the layout of the mid-

dle layer.
Phases 1)–5) of the algorithm first compiles structural infor-

mation (see Section IV-A). If the multistep folding is necessary,
the algorithm runs Phase 6) to compile the time information to
the middle layer design of the layout (see Section VI-B).

If the input is an origami model associated to its crease pattern
and fold angles, the algorithm starts in Phase 3) after skipping
Phases 1) and 2).

Theorem 1: Any mesh with n vertices (O(n) faces) can be
folded from a multiple-step self-folding pattern built by a design
algorithm in O(n2) time.

Theorem 1 provides the design algorithm’s geometric correct-
ness of output self-folding origami design. Section IV-C shows
a proof of the theorem.

The notations of the paper are listed in Table I.

1A polygon mesh is a collection of faces that defines a polyhedral object.
2An origami model is a folded state of a paper structure, that is represented

with a crease pattern and folded angles [16].

AN et al.: END-TO-END APPROACH TO SELF-FOLDING ORIGAMI STRUCTURES 1413

Fig. 8. Six phases of self-folding origami design algorithm.

TABLE I
NOTATIONS

A. Compile Structural Information

1) Unfolding a 3-D Mesh: The objective of this phase is to
compute the unfolding of a given 3-D shape. Several algorithms
exist to unfold 3-D meshes or 3-D origami designs [44]–[46].
Given a mesh, a set of nets3 is constructed on a plane without
any collisions [47]. In this paper, we transform the 3-D mesh
in a graph and unfold it using Prim’s algorithm (a minimum

3A net of a mesh is an arrangement of edge-jointed faces in a plane.

spanning tree algorithm) [48]. As the algorithm unfolds the 3-D
mesh, it maintains the relationship between the vertices of the
unfolded 2-D structure and the 3-D mesh.

We define a mesh M is a pair (V, F), where V is a finite set
of the vertices, and F is a finite set of the faces of the mesh. A
unfolding (net) N is four-tuple (V ′, E′, F ′, T), where V ′ is a
finite set of the vertices, E′ is a finite set of the edges e′ = {a, b},
a and b are in V ′, F ′ is a finite set of the faces of the net, T is
a finite set of (e′, t), and t is a state of e′ in {〈cut〉, 〈hinge〉}.
e(e′) ∈ E(M) is an original edge of e′ ∈ E ′. f(f ′) ∈ F (M) is
an original face of f ′ ∈ F ′. Since all the vertices of the nets are
originally from a mesh, during the unfolding process, tracking
functions for e(e′) and f(f ′) can be constructed.

2) Computing Fold Angles: The goal of this phase is to com-
pute the fold angles associated with all the edges of a given mesh
(see Fig. 9). In origami theory [49], an edge (hinge) is a line
segment between two faces. A fold angle of an edge is the sup-
plement of the dihedral angle between two faces (see Fig. 10).
The sign of the fold angle is determined by the hinge: either a
valley fold (+) or a mountain fold (-).

Lemma 1: Given a mesh, a finite set U of all fold angles of
the mesh is computed in O(n2 ×m) time, where n vertices and
m edges are in the mesh.

Proof: For each edge, if the edge is not cut, there are two
neighboring faces sharing the edge (Algorithm 1 Step 1). Using
the dot product and the cross product of their normal vectors,
the algorithm calculates the fold angle [see Steps (b), (c)]. Since
there are at most n2 edges, the algorithm computes and stores
all angles in O(n2 ×m) time. �

Corollary 1: The angles of the mesh can be computed in
O(n2) by update Step 1 (See footnote 4)

3) Constructing the Self-Folding Crease Pattern: This phase
takes two inputs, a set of nets and fold angles and computes
a self-folding crease pattern (the abstracted self-folding in-
formation), as shown in Fig. 9. In this section, we show that
Algorithm 2 constructs a correct self-folding crease pattern (see
Lemma 4). Lemma 2 shows the construction of a self-folding
crease pattern, and Lemma 3 shows the correctness of the con-
structed crease patterns.

Lemma 2: Given a net N and a finite fold angle set U ,
Algorithm 2 constructs a self-folding crease pattern N ′ in O(n2)
time.

Proof: Given N and U for each element (e, u) ∈ U ,
Algorithm 2 transforms the element into (e′(e), u) and inserts
it to U ′. The algorithm builds a self-folding crease pattern

4The time complexity improves from O(n2 ×m) to O(n2) when Step 1)
of Algorithm 1 is replaced by following statement: For each face, f1 ∈ E(M)
and for each edge e = {a, b} of f1 , where e′ �= 〈cut〉.

1414 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 6, DECEMBER 2018

Fig. 9. Data structures of self folding origami design algorithm.

Fig. 10. Fold angle at a crease is the supplement of the dihedral angle.

Algorithm 1: Computing Fold Angles.

input: M = (V, F), where all the normal vectors of the
faces point outside and the vertices of each face
(v1 , v2 , . . . , vk) are positioned counterclockwise
from the top view of each face.

output: U

1) For each edge e = {a, b} ∈ E(M), where
e �= 〈cut〉.

a) Find two faces f1 , f2 where f1 contains
directional edge (a, b), and f2 contains
directional edge (b, a).

b) Get u = acos(n1×n2
|n1 ||n2 |), where n1 and n2 are

the normal vectors of f1 , f2 , respectively.
c) If u �= 0, and directions of (a, b) and n1 × n2

are different, assign ‘-’ to u; otherwise, assign
‘+’ to u.

d) Insert (e, u) into U .

Algorithm 2: Constructing Self-Folding Crease Pattern.

input: N = (V ′, E′, F ′, T), U
output: N ′ = (V ′, E′, F ′, T, U ′)

1) For each (e, u) ∈ U , insert (e′(e), u) into U ′

2) Construct N ′ = (V ′, E′, F ′, T, U ′)

N ′ = (V ′, E′, F ′, T, U ′) by adding U ′ on N . The algorithm
runs in O(n2) time. �

Lemma 3: Given a mesh M , its net N , its angle set U the self-
folding crease pattern N ′ generated by Algorithm 2, M ′(N ′) is
equivalent to M , where M ′(N ′) is the folded state of N ′.

Proof: Let L = {f ′1 , f ′2 , . . . , f ′k}, where L ⊆ F ′, e(e′) =
∃e(e′′), e′ is an edge of f ′i , e′′ is an edge of f ′j , j < i

and L = F ′. Let Lt be {f ′1 , f ′2 , . . . , f ′t} ⊆ L. Let F (Mt) be
{fi = f(f ′i) | f ′i ∈ Lt}. Let F (M ′

t) be {f ′′1 , f ′′2 , . . . , f ′′t }, where
each f ′′i is a face of the folded state of f ′i ∈ L.

For each t ≥ 1, P (t) is M ′
t = Mt , where Lt = F (Nt), and

Nt is the crease pattern of Mt .
Basis: P (1): M ′

1 = M1 because f1 = f ′′1 .
Induction step: For each k ≥ 1, we assume that P (k) is true,

and we show that it is true for t = k + 1.
Suppose the inductive hypothesis is that M ′

k is equal to Mk ,
and fk+1 and f ′′k+1 are the same shape. By the definition of Lk+1 ,
f ′k+1 must be connected to f ′s ∈ Lk , and f(f ′k+1) is connected
to f(f ′s), where s < k + 1.

Let u′ be the fold angle of e′ between f ′′s and f ′′k+1 . Then u =
u′, where u is the fold angle of e(e′). Thus, fk+1 = f ′′k+1 and
F (M ′

k+1) = F (Mk+1). Therefore M ′
k+1 = Mk+1 , and P (t) is

true. �
Lemma 4: Given M , N , and U(M), Algorithm 2 correctly

generates a self-folding crease pattern in O(n2) time.
Proof: Lemma 2 shows that Algorithm 2 builds a self-folding

crease pattern in O(n2) time. Lemma 3 shows that this self-
folding crease pattern is correct. Therefore, Lemma 4 is true.�

4) Constructing a Self-Folding Origami Design: Given a
self-folding origami crease pattern and actuator design func-
tion, this phase generates a self-folding origami design (see
Fig. 9). A self-folding origami design is an abstracted model of
the actuators and the outlines.

A self-folding origami design is a finite set of pair (e′, d),
where e′ is an edge, and d is an actuator design. An actuator
design d is (wt, wc , wb), where wt , wc , and wb are in R∪{ε} and
are the gaps on the top, middle, and bottom layers, respectively
(see Fig. 5). If a variable is in R, the variable is a gap. If a variable
is ε, then there is no gap. The model in Fig. 5 is (wt,ε, wb). The
gaps of the top and bottom layers are wt and wb . Because wc

is ε, the middle layer has no gap.
An actuator design can express an outline. For example, if an

actuator design is (0, 0, 0), all three layers of this actuator have
cuts, and these cuts become an outline.

g : A→ D denote an actuator design function, where A is
a set of angles between −180◦ and +180◦ and D is a set of
actuator designs. The function is dependent on the self-folding
material. Each type of self-folding material has a different
function. The implementation of g for the experiments is
discussed in Section V.

Proof: Algorithm 3 constructs self-folding origami design
H . U ′ contains the fold angles of the edges, while T contains

AN et al.: END-TO-END APPROACH TO SELF-FOLDING ORIGAMI STRUCTURES 1415

Algorithm 3: Constructing Self-Folding Origami Design.

input: N ′ = (V ′, E′, F ′, T, U ′), g : A→ D
output: H

1) For each (e′, u) ∈ U ′:
a) d← g(u)
b) If t = 〈hinge〉, where (e′, t) ∈ T :

i) Insert (e′, d) into H
c) If t = 〈cut〉:

i) d← (wt(d), 0, wb(d))
ii) Insert (e′, d) into H

iii) T ← T − {(e′, 〈cut〉)}
2) For each (e′, 〈cut〉) ∈ T :

a) d← (0, 0, 0)
b) Insert (e′, d) into H

the types of the edges. Given angle u, g(u) outputs actuator
design d [see Step 1-(a)]. According to edge type t and g(u),
Algorithm 3 computes each design of the actuator.

For each edge, if the edge is a hinge, the algorithm inserts
(e′, d) into H . The algorithm removes the edge type from T
after inserting the actuator design of the edge [see Step 1-(c)-
(iii)]. After Step 1, all edges in T are the cuts of both input mesh
and unfolding. Step 2 compiles these edges into actuator design
(0, 0, 0). All edges of N’ are compiled to H . The algorithm runs
in O(n2) time. �

5) Constructing a Self-Folding Origami Layout: A self-
folding origami layout contains the graphical information of
each layer. Given a self-folding origami design, this phase gen-
erates three layers of the layout (see Fig. 9). For each element
of a self-folding origami design, an actuator layout of a layer is
drawn (see Fig. 11).

Lemma 5: A self-folding origami design has a valid self-
folding origami layout, computable in O(n2) time.

Proof: The output of Algorithm 4 is the self-folding origami
layout L. L composes three nets Lt , Lc , and Lb . They are the
graphical information of the top, middle, and bottom layers,
respectively. The algorithm builds the nets.

Each element (e′, d) in D contains the gap of each layer and
the shape of the bridge. Given an edge, the gap of an actuator
of a layer, and a bridge shape, Algorithm 5 draw the layout of
the actuator of the target layer. d contains correct actuator and
outline information, and wt , wc , and wb of d are correct values.
Steps (a)–(c) construct the actuator layout for e′. Steps (d)–(i)
add this layout of each layer. The algorithm runs O(n2) while
Steps (a)–(c) are O(1). �

Lemma 6: Each edge of a self-folding origami design has a
valid folding actuator.

Proof: All actuators and cuts of a self-folding crease pat-
tern are described with fold actuators. (1, ε, 0) is an example
of a valley fold actuator. (0, ε, 1) is an example of a mountain
fold actuator. (0, 0, 0) is an example of a cut. Each actuator is
composed of three layers. Steps (a)–(c) of Algorithm 4 draw an
actuator or a cut using Algorithm 5, which draws each layer of
the actuator. For example, if an actuator is (1, ε, 0), Step (a) of

Fig. 11. For input edge ei = {a, b}, Steps (a)–(g) of Algorithm 5 draws a
rectangle as an actuator layout (a). Steps (h) and (i) rotates the layout (b).
Steps (j)–(k) shifts the layout (c).

Algorithm 4: Drawing Self-Folding Origami Layout.
input: H
output: L = (Lt, Lc , Lb)

1) For each (e′, d = (wt, wc , wb)) ∈ H
a) Run Algorithm 5 on e′ and wt as w0 , and

Algorithm 5 returns Gt = (V ′′t , E′′t)
b) Run Algorithm 5 on e′ and wc as w0 , and

Algorithm 5 returns Gc = (V ′′c , E′′c)
c) Run Algorithm 5 on e′ and wb as w0 , and

Algorithm 5 returns Gb = (V ′′b , E′′b)
d) Vt ← Vt ∪ V ′′t where Lt = (Vt, Et)
e) Et ← Et ∪ E ′′t
f) Vc ← Vc ∪ V ′′c where Lc = (Vc, Ec)
g) Ec ← Ec ∪ E ′′c
h) Vb ← Vb ∪ V ′′b where Lb = (Vb, Eb)
i) Eb ← Eb ∪ E ′′b

2) Construct L = (Lt, Lc , Lb)

Algorithm 4 runs Algorithm 5 on 1 as w0 . Algorithm 5 draws
the top layer of the actuator with a gap. In Step (b), Algorithm 5
skips the drawing because w0 is ε. In Step (c), Algorithm 5
draws a line {a, b}, because w0 is 1. These three layers be-
come an actuator like Fig. 6. Algorithm 5 draws a layer of an
actuator, as shown in Fig. 11. Algorithm 5 is O(1). Therefore,
Steps (a)–(c) run in O(1).

B. Compile Time Step Information

1) Construction the Middle Layer: In our previous paper
[16], we introduced algorithms that, given the final folded state
of an origami, determine a folding sequence. The folded state has

1416 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 6, DECEMBER 2018

Algorithm 5: Construct Actuator Layout.

input: e′ = {a, b}, w0
output: G = (V ′′, E′′)

1) If w0 =ε, then V ′′ ← φ and E ′′ ← φ and return.
2) If w0 = 0, then insert a, b into V ′′ and {a, b} into

E ′′.
3) If w0 �= 0:

a) l← (length of e′)/2
b) v1 ← (w0 , l)
c) v2 ← (w0 ,−l)
d) v3 ← (−w0 ,−l)
e) v4 ← (−w0 , l)
f) Insert v1 , v2 , v3 , v4 into V ′′

g) Insert {v1 , v2}, {v2 , v3}, {v3 , v4}, {v1 , v4}
into E′′

h) θ ← arctan2(yb − ya , xb − xa)
i) Rotate all vertices in V ′′ through θ
j) c← (a + b)/2
k) For each v ∈ V ′′, v ← v + c

information about the number of hinges and their final angles.
The folding sequence has information about when the folding
groups of hinges are folded, where a group of hinges fold simul-
taneously. We found that, in practice, some origami structures
had to be constructed with more than one folding step. A colli-
sion is a common issue of failure, for this reason, the folding tra-
jectory should be more accurately controlled. Fortunately, there
are many origami shapes can be realized with multiple-folding
steps. Our prior approach was to use an on-board electronic
controller to selectively transfer energy to a folding hinge [17],
[18]. The hinge was triggered by the local heat made by the
energy. In this section, we introduce self-folding origami that
transform themselves into user’s desired shapes with multiple-
folding steps. The origami work with uniform heat, no on-board
controllers, and no local heat control.

To achieve multiple-step sequential folding with uniform
heat, we extend the self-folding origami model with a multi-
material shrinking layer (see Fig. 7). The top and bottom layers
of this model are automatically designed by Algorithm 4. The
middle layer is composed of multiple materials that react to
different temperatures. Intuitively, the edges made of materials
reacting to lower temperatures fold first. Then, the other folding
edges reacting to higher temperatures fold after that. Additional
details of the model are described in Section III-B. Given a self-
folding crease pattern, a folding sequence can be automatically
computed—in our prior work [16], we introduced a folding-
planning algorithm that computes optimized folding sequences
by grouping the simultaneously foldable edges and minimizing
folding steps. For k-step sequential folding, k shrinking mate-
rials are used for the middle layer.

The middle layer of self-folding origami is algorithmically
designed. In this section, we describe an algorithm for generat-
ing the design of a middle layer (see Fig. 12, Algorithm 6).

An edge e in this section is a three-tuple (a, b, g), where a
and b are vertices, and g is a folding group. The edges with the

Fig. 12. Example of the construct of a multimaterial middle layer (see
Algorithm 6). (Left) Crease Pattern N ′. The red dotted lines are the first step
folding creases, and the blue dashed lines are the second step folding creases.
(Right) Middle Layer of Layout Lc . The red solid line polygon is shrinking
material 1. The blue dashed line polygon is shrinking material 2. Material 1
reacts at the first folding step. Material 2 reacts at the second folding step.

Algorithm 6: Constructing Multi-Material Middle Layer.

input: N ′ = (V ′, E′, F ′, T, U ′), Lc = (Vc, Ec)
output: Lc = (Vc, Ec)

1) For each e in E′, if e is an outline, set 〈None〉 to
group g(e).

2) Split all faces in F ′ into triangle faces, and set
〈None〉 to the groups of all newly made edges
during the triangulation.

3) For each face f = (a, b, c) in F ′:
a) Insert a new vertex i in V ′, where i is the

center of the incircle of the triangle f .
b) For each edge e = (v1 , v2 , g) of f :

i) Insert face ((v1 , v2 , i), g(e)) into F ′′,
where g(e) is the folding group of edge
(v1 , v2).

ii) Insert (v1 , i, g(e)), (v2 , i, g(e)) into B.
iii) If e is an outline, insert (v1 , v2 , g(e))

into B.
4) For each e in B, where f ∈ F ′ and f ′ ∈ F ′′ are the

neighbor faces of e, and g(f) is 〈None〉 and g(f ′) is
not 〈None〉:

a) g(f)← g(f ′).
b) Change the groups of all edges of f to g(f ′).

5) Repeat 4) until the group of no edges in B is
〈None〉.

6) For each e in B, where f and f ′ in F ′′ are sharing e,
and g(f) is equal to g(f ′):

a) Remove e from B.
7) Vc ← Vc ∪ V ′

8) For each (v1 , v2 , g) ∈ B, insert {v1 , v2} into Ec

same folding group are folded at the same time. The edges of
the smaller folding groups always fold before the edges of larger
folding groups. For example, the edges of group 1 fold before
the edges of group 2.

Lemma 7: A self-folding crease pattern with sequential fold-
ing steps has a valid shrinking layer design, computable in
O(n2) time, where n and O(n) are the numbers of vertices
and faces, respectively.

Proof: Algorithm 6 constructs a multimaterial shrinking
layer. The algorithm is composed of four parts. Steps 1–3 pre-
pare the geometry, Step 4 tessellates the possible boundaries of
the materials, and Steps 5 and 6 assign all areas to a shrinking
material. Step 7 removes unnecessary boundaries and merges

AN et al.: END-TO-END APPROACH TO SELF-FOLDING ORIGAMI STRUCTURES 1417

the areas. Step 8 outputs B, the design of the multimaterial
shrinking layer. Each edge of B is assigned a folding group.
All edges of each folding group represent the boundary of the
shrinking material for this folding group.

Given a self-folding crease pattern N ′, the algorithm sets
〈None〉 to the groups of outline edges (see Step 2) and the
groups of new edges generated during the triangulation (see
Step 3). In Step 4, it splits each triangle into three small triangles.
It adds vertex i, where i is the center of the inscribed circle of
the triangle. In Step 4-b, the algorithm constructs a boundary
edge set B and small triangle set F ′′. Step 4 runs in O(n). After
building F ′′, some small triangles (faces) in F ′′ are not assigned
to any groups. The algorithm moves the faces in the 〈None〉
group to the group of a neighbor face (see Step 5). After this step,
all faces are assigned to exactly one folding group. For these
steps, we chose the triangle shape as it is the most commonly
used polygon for mesh given its consistent convex property.
In this regard, any partitioning algorithm, including Voronoi
partitioning, shall work.

O(n) is the number of the edges in the 〈None〉 group after
Step 4. Each time Step 6 runs, at least one group of an edge in
B is changed from 〈None〉. Thus, Steps 5 and 6 run in O(n2).

The algorithm merges the areas with the same material by
removing the boundary edges in B (see Step 7). The algorithm
exports a valid shrinking layer (see Step 8). Since all the small
faces are assigned to a group, Step 7 runs in O(n). The total
running time is O(n2), and the running space is O(n). �

Fig. 13 shows the input and output of the algorithm. The
inputs are the final folding states of the origami structures.

C. Proof of Theorem

Now we are ready to prove Theorem 1.
Proof: We derive the layout of the self-folded origami whose

folded state is equivalent to the input model (see Lemma 3). We
also show how a sequence of origami folding is encoded into
the associated self-folded origami (see Lemma 7). Each group
of edges is associated with a middle layer material that reacts
to heat. Thus each edge can be folded according to the target
angle. The total required computation time is O(n2). �

V. IMPLEMENTATION

A. Software for Compiling a Printable 2-D Design

We implemented the design algorithm in Java. The input file
formats are Wavefront .obj for a 3-D mesh and AutoCAD .dxf
for a 3-D origami design [16]. The output files are in the .dxf
format.

To support the various manufacturing processes of the self-
folding origami, the software supports script files to define the
template of the fabrication files (outputs). To demonstrate auto-
matically generated self-folding origami with two manufactur-
ing processes, we built two template scripts: a folding-alignment
manufacturing process [35] and a pin-alignment manufacturing
process [36].

Fig. 13. Design of the multiple-step folding algorithm. (Input Origami) An
input origami represents a final fold state of origami. Each colored crease line
represents an angle and a step. Each line of an angle of compound folding is
180◦. The red dotted lines are the first step folding creases, and the blue dashed
lines are the second step folding creases. All lines are valley folds. (Top, Bottom
Layers) The red solid lines are cut traces. The top and bottom layers are rigid
materials. (Middle Layer) The red solid line polygons are shrinking material 1.
The blue dashed line polygons are shrinking material 2. Materials 1 and 2 react
sequentially.

B. Actuator Design Function

The folding angle is determined by the combination of the
thicknesses of three layers. Our previous work revealed that the
torque inducible is proportional to the thickness [36], namely
the mass of SMP, albeit the mass also increases in the same
proportion. This implies that in order to exploit the maximum
lifting torque of a hinge, using less dense structural sheet is a
solution. We also identified various issues caused by the physical
limitation associated with practical self-folding.

Given a fold angle u, an actuation design function g outputs
an actuator design d. An actuator design is composed of three
parameters (wt, wc , wb) (see Section III). We implement this
function by sampling the profile and construct a fold angle
sample set S. When g receives u, if u is in S, g outputs d in S;
otherwise, g approximates and outputs a design. This function
is formally defined as shown in Definition 1.

Definition 1: An actuator design function is g : A→ D,
where

1. A is a set of the angles u (−180◦ ≤ u ≤ 180◦);
2. D is a set of the actuator designs {d1 , d2 , d3 , . . . , di , . . .}

(see Section IV-A4);
3. S is a finite set of the fold angle samples si = (u, d) for

u(si) < u(si+1);
4. s0 = (0, (0,ε, 0)) ∈ S;
5. if (u, d) ∈ S, then, g(u) = d;

1418 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 6, DECEMBER 2018

Fig. 14. Graph of an implemented actuator design function for the pin align-
ment process. The inset images show the test strips used to characterize the fold
angle as a function of the size of the gap on the inner structural sheet. Each bar
is the standard deviations from the average of the angles of three hinges (see
Table II).

6. if (u, d) �∈ S, then, g(u) = (w(di) + (u− ui/ui+1 − ui)
× (w(di+1)− w(di)), ε, b(di) + (u− ui/ui+1 − ui) ×
(b(di+1)− b(di))), where ui = u(si), ui+1 = u(si+1),
di = d(si), di+1 = d(si+1), ui < u < ui+1 , and si ,
si+1 ∈ S.

g(u) is continuous for u ∈ A. If u is in u(s) for s = (u, d) ∈
S, g(u) outputs d. Otherwise, g(u) constructs an actuator design
d according to the actuator ratio (u− u1/u2 − u1) and designs
d1 and d2 , where u1 and u2 are the angles of d1 and d2 , and
u1 < u < u2 .

Theoretical model covers geometric properties, such as colli-
sions, edge types, or scalability. The geometry issues are char-
acterized by material functions that can experimentally be built.
The other practical issues include thickness, transition temper-
atures, force, gravity, and self-folding hinges connected with
many faces. To handle these issues, we define an actuator de-
sign function and develop a planning algorithm. The function
works as an interface between the algorithm and experiments.
To minimize the gap between theory and experiment, we have
implemented the function using experimental data. We plugged
this function into the pipeline system (software), as an input.
It covers the unpredictable characteristics of self-folding transi-
tions.

To implement the actuator design function, we characterize
the fold angle as a function of the actuator geometry. We built
eight self-folding strips with gaps on the inner layer in the range
of 0.25–2 mm and baked them at 170 ◦C. Each strip had three
actuators with identical gap dimensions. After baking, we mea-
sured the fold angle of each self-folded actuator with a different
gap, as shown in Fig. 14. This method is modified from our
prior work in [36]. This time, we automated the design process
of the strips using our self-folding origami design pipeline. We

TABLE II
FOLDING ANGLES

Fig. 15. (Top) Self-folded 3-D shapes: the house, humanoid, egg, and bunny
shapes. Each scale bar is 10 mm. (Bottom) Input models. We modeled the house
and humanoid designs with paper and coded them into origami patterns. We
modeled the egg and bunny shapes using CAD software.

can easily generate another set of strips for a different range of
gaps.

VI. EXPERIMENTS

A. Fold Structure Control

We evaluated the self-folding pipeline by building self-
folding origami sheets for four shapes: a house, a humanoid,
an egg, and a bunny (see Fig. 15). The bunny is the most com-
plex shape we self-folded by heating. Given the 3-D models of
these input shapes, the pipeline outputs a set of .dxf files contain-
ing the layout of each self-folding origami. We built and baked
each self-folding origami according to two different fabrication
processes: folding alignment [35] and pin alignment [36]. The
pipeline successfully built the shapes in a relatively short time
(see Table V).

We built the humanoid and house origami shapes using paper.
The 3-D shape of the house was composed of nine faces, and
its 2-D unfolding contained eight actuators. The 3-D shape of
the humanoid was composed of 41 faces, and its 2-D sheet
contained 44 self-folding actuators (see Table III). Fig. 16(a)
and (b) shows the fabrication files of the house shape and the
humanoid shape.

The egg shape was modeled in the CAD software (Solid-
works, Dassault Systemes SolidWorks Corp.) and exported as a
3-D mesh with 2538 faces. We reduced the number of the faces
to 50 (MeshLab, Visual Computing Lab, ISTI, CNR) and then
unfolded it with our software. The 2-D sheet of the egg con-
tained 48 actuators (see Table III). We generated the fabrication

AN et al.: END-TO-END APPROACH TO SELF-FOLDING ORIGAMI STRUCTURES 1419

TABLE III
COMPLEXITY OF TARGET MODEL

TABLE IV
FABRICATION AND MATERIAL OF SELF-FOLDING SHEETS

TABLE V
COMPUTING AND SELF-FOLDING TIMES

Fig. 16. Fabrication layout for self-folding origami. (a) and (b) are fabrication
layouts of the folding alignment process generated for the house and humanoid.
The left and right sides of each house and humanoid are the top and bottom
layers, respectively. The line in the center guides the folding alignment while
the top layer and the bottom layer are sandwiched. (c) and (d) are fabrication
layouts of the pin alignment process generated for the egg and bunny. The tiny
holes are for the pin alignments. The left, middle, and right sides of each egg
and bunny are the top layer, the bottom layer, and the final outline.

Fig. 17. Histograms of the fold angles. The x-axis is fold angles. The y-axis is
the frequency. The width is 2.5◦. (a) House. (b) Humanoid. (c) Egg. (d) Bunny.

Fig. 18. Self-folding sheets (before baking) for humanoid (left), egg (center),
and bunny (right). Each scale bar is 10 mm.

files for the egg shape from this model. Fig. 16(c) shows the
fabrication files of the egg shape.

For the bunny shape, we downloaded the 3-D Stanford Bunny
(Rev 4, Stanford Computer Graphics Laboratory), which con-
tains 948 faces, and reduced the number of the faces to 55 using
MeshLab. We unfolded this mesh and created the fabrication
files with our software. Fig. 16(d) shows the fabrication files of
the bunny shape.

After we built the fabrication files, we manufactured physical
self-folding origami sheets for the house, humanoid, egg, and
bunny shapes (Fig. 18). Folding alignment was used for the
house and humanoid shapes, whereas pin alignment was used
for the egg and bunny shapes. The algorithm of the pipeline is
general enough to apply to two different self-folding approaches
(see Table IV).

Each shape has various fold angles. The distributions of these
angles are shown in the histograms in Fig. 17. The angles of
the humanoid have the widest range, although the most frequent
angles are 90◦. The bunny includes the most diverse angles in
both valley and mountain folds.

We heated the house and humanoid at 65 ◦C without pre-
heating the oven. We put each sheet into the oven at the room

1420 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 6, DECEMBER 2018

Fig. 19. Frames from the experiment of the self-folding humanoid shape by
uniform heating. The sheet was built using the folding alignment process. The
time elapsed since exposure to uniform heating is indicated in the upper-right
corner of each frame (in minutes and seconds).

Fig. 20. Frames from the experiment of the self-folding egg shape by uniform
heating. The sheet was built with the folding alignment process. The time elapsed
since exposure to uniform heating is indicated in the lower-right corner of each
frame (in minutes and seconds).

temperature and then increased the heat to 65 ◦C. The egg and
bunny were baked in an oven preheated to 120 ◦C. While the
sheet of the egg shape was placed on the preheated ceramic
plate, the sheets of the humanoid, house, and bunny shapes
were hung on bars in the oven to reduce the effect of gravity
on the self-folding process.5 Figs. 19, 20, and 1 show frames
of the videos taken during the experiments with the self-folding
bunny, humanoid, and egg shapes, respectively. To determine
the reliability of the pipeline, we baked ten self-folding bunnies
and eight eggs and measured their well-formed rates. When all
vertices meet in a 3 mm (the circle size of the vertices) radius
circle, the result is called a well-folded shape; otherwise, it is
called a failed shape.

Our self-folding algorithm designed self-folding origami
sheets that accurately reproduced the house and humanoid
shapes. The house, humanoid, and bunny shapes were suspended
while they were self-folding because the fold-force is not strong

5For an analysis of the forces provided by such self-folding actuators in the
presence of gravity as well as the resulting design constraints.

TABLE VI
FAILURE RATES

Fig. 21. Self-folded bunny and egg shapes. The scale bar is 10 mm.

enough to lift the whole body. The egg shape is folded on a
plate.

Using the proposed pipeline, the self-folded structures were
rapidly designed and built (see Table V). The computing time
for each model was less than 0.5 s. The self-folding time was
also relatively short. All shapes folded themselves in 7 min; the
egg folded itself on a preheated ceramic plate in 3 min. The time
to physically construct the 2-D self-folding origami sheets took
longer than all of the other steps combined because the con-
struction includes manual labor, such as CO2 laser machining,
alignment, layer lamination, and release cutting.

The failure rate of the egg shape was 0% while the failure rate
of the bunny shape was 20.0%. Two out of the ten bunnies failed
because of overfolding, creating collisions during the process.
Delamination of the SMP layers from the structural layers was
observed along the overfolded edges. The total failure rate was
11.1% (see Table VI, Fig. 21).

During the self-folding of some bunny shapes, slight colli-
sions of the faces (which did not interrupt the folding procedure)
were observed. This can be addressed by using a self-folding
simulator to minimize the collision while the pipeline generates
the design. Alternatively, we can use a multiple-step folding
algorithm.

B. Time Control

Fig. 13 shows the multiple-step self-folding patterns used for
the time-control experiments.

1) Compound Folding: To achieve multiple-step self-
folding, two materials, PVC (SMP 1), which reacts at ∼65 ◦C,
and polyolefin (SMP 2), which reacts at 80 ◦C, are used for
actuation to enable a two-step self-folding process. The exper-

AN et al.: END-TO-END APPROACH TO SELF-FOLDING ORIGAMI STRUCTURES 1421

Fig. 22. Front and back sides of the self-folded egg and bunny. Each scale bar
is 10 mm.

Fig. 23. Frames from the experiment of compound folding. Two actuation
materials differentiate the timings of self-folding and enable compound folding.

TABLE VII
FABRICATION, MATERIAL, AND TIME SPECIFICATION OF BOX AND LATCH

SHAPE

imental result of compound self-folding is shown in Fig. 23.
The experiment was conducted on the water in an oven, and the
temperature was raised to 80 ◦C from the room temperature.
Note that the elapsed time shown was measured starting from
the time that deformation on creases was observed. First, two
creases actuated by PVC started self-folding (33–53 s) then a
crease actuated by polyolefin followed (86–96 s). As a result,
the structure was folded into a fourth of the original size (105 s).

2) Box and Latch: We designed two self-folding shapes to
demonstrate the significance of sequential folding (see Figs. 24
and 25). The first design presents a folded box [see Fig. 25(d)],
which requires sequential folding, while the second addresses
the issue of latching in order to lock the assembled structure [see
Fig. 25(h)]. Both shapes require a two-stage folding sequence for
proper assembly. [Unsuccessful single-stage versions of these
designs are shown in Fig. 25(b) and (f).]

To achieve sequential folding, we used a multimaterial layer
(see Fig. 7) composed of polyolefin (SMP 1) for the first stage
of folding and prestrained polystyrene (SMP 2) for the second.
Fig. 25(a), (c), (e), and (g) show 2-D laminates, where the trans-
parent hinges show the region composed of polyolefin, and the
solid-colored hinges show the region composed of PP. To fabri-
cate these laminates we used pin-alignment (see Fig. 5). We cut

Fig. 24. Frames from the experiment of box and latch. (From the top left) (a)
Single-material middle layer for box. (b) Multimaterial middle layer for box. (c)
Single-material middle layer for latch. (d) Multimaterial middle layer for latch.

the generated .dxf files from the algorithm presented earlier for
all the layers using a laser system (ULS PLS6MW). The layers
were laminated using adhesive layers. Finally, the laminate was
heated in a convection oven (12 qt. Fagor Halogen) until the
final structure was achieved.

We performed eight trials for each shape with the oven starting
from the room temperature and set to a target temperature of
175 ◦C. The sequential folding specified in input origami was
achieved. Box SMP 1 reacted before Box SMP 2. Latch SMP
1 reacted before Latch SMP 2. Box SMP 1 reacted before Box
SMP 2. Latch SMP 1 reacted before Latch SMP 2. As the
oven heated, the region involving polyolefin actuated first at an
average time and temperature of 82 s at 99 ◦C for the box and
90 s at 94 ◦C for the latch. The polystyrene began folding for the
box at 200 s at 140 ◦C and at 118 s at 111 ◦C for the latch. Fig. 26
shows the relative temperature of actuation measured using a K-
type thermocouple (Fluke 87 V Digital Multimeter). This graph

1422 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 6, DECEMBER 2018

Fig. 25. Unfolded (left column) and folded (right column) structures for the
box and latch. (a) single-material middle layer for box. (b) Failed box assembly
for a single-material middle layer. (c) Multimaterial middle layer for box. (d)
Successful sequential folding of box for a multimaterial middle layer. (e) Single-
material middle layer for latch. (f) Failed latch assembly for a single-material
middle layer. (g) Multimaterial middle layer for latch. (h) Successful sequential
folding of latch for a multimaterial middle layer.

Fig. 26. Relative temperatures of actuations for SMP 1 and 2 for box and
latch shapes. SMP 1 and 2 are used for the first and second folding steps of the
shape, respectively. Each bar is the standard deviations from the average. Eight
points of each material represent the relative temperatures of eight trials of each
shape.

shows a distinct difference in the actuation temperature for the
polyolefin and polystyrene SMPs for each shape.

VII. CONCLUSION AND FUTURE WORK

In this paper, we described an end-to-end approach to de-
signing and building self-folding origami sheets activated by
uniform heat. We introduced a design pipeline that automati-
cally generates folding information for an arbitrary 3-D shape
and then compiles this information into fabrication files. We
modeled single- and multiple-step self-folding origami sheets
that fold into arbitrary fold angles. We proposed a design al-
gorithm for such sheets and proved its correctness. We also
demonstrated the implementation of this pipeline and charac-
terized the actuator design function to convert the theoretical
design into a physical self-folding origami. Finally, we vali-
dated this approach experimentally by generating self-folding
origami for the fabrication of seven target shapes with up to 55
faces and up to 2 step folds. These were correctly designed and
baked into their respective physical shapes under uniform heat.

Several practical challenges remain to be addressed in the
physical fabrication of self-folding origami sheets. Delamina-
tion of the SMP layers from the structural layers occurred along
the edges of our self-folding origami when baking the egg and
bunny shapes. This can be mitigated by sealing the edges of the
sheet or with improved adhesion.

Another challenge is the evaluation of self-folding origami.
Although the back side of the bunny shape in Fig. 22 shows the
completion of the shape, it was difficult to evaluate or analyze
the completeness of the self-folded model. The development of
benchmarks and criteria for evaluating the quality of self-folding
origami would support a systematic approach to methodological
improvements in this area. In our future work, we aim to extend
this approach to create mobile/actuatable self-folded machines.

ACKNOWLEDGMENT

The authors would like to thank D. M. Aukes, L. Meeker, J.
Romanishin, and M. Volkov for their insightful discussions and
technical support for this research.

REFERENCES

[1] K. Miura, “Method of packaging and deployment of large membranes
in space,” Inst. Space Astronaut. Sci., vol. 618, pp. 1–9, 1985. [Online].
Available: https://repository.exst.jaxa.jp/dspace/handle/a-is/7293

[2] S. A. Zirbel et al., “Accommodating thickness in origami-based deploy-
able arrays 1,” J. Mech. Des., vol. 135, no. 11, Nov. 2013, Art. no. 111005.

[3] C. D. Onal, R. J. Wood, and D. Rus, “An origami-inspired approach to
worm robots,” IEEE/ASME Trans. Mechatronics, vol. 18, no. 2, pp. 430–
438, Apr. 2013.

[4] S. T. Brittain, O. J. A. Schueller, H. Wu, S. Whitesides, and G. M.
Whitesides, “Microorigami: Fabrication of small, three-dimensional,
metallic structures,” J. Phys. Chem. B, vol. 105, no. 2, pp. 347–350,
Jan. 2001.

[5] A. P. Gerratt, I. Penskiy, and S. Bergbreiter, “Integrated silicon-PDMS
process for microrobot mechanisms,” in Proc. IEEE Int. Conf. Robot.
Autom., 2010, pp. 3153–3158.

[6] A. M. Hoover, E. Steltz, and R. S. Fearing, “RoACH: An autonomous
2.4g crawling hexapod robot,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2008, pp. 26–33.

AN et al.: END-TO-END APPROACH TO SELF-FOLDING ORIGAMI STRUCTURES 1423

[7] P. S. Sreetharan, J. P. Whitney, M. D. Strauss, and R. J. Wood, “Mono-
lithic fabrication of millimeter-scale machines,” J. Micromech. Microeng.,
vol. 22, no. 5, May 2012, Art. no. 055027.

[8] A. T. Baisch, O. Ozcan, B. Goldberg, D. Ithier, and R. J. Wood, “High
speed locomotion for a quadrupedal microrobot,” Int. J. Robot. Res.,
vol. 33, no. 8, pp. 1063–1082, Jul. 2014.

[9] F. Haas and R. J. Wootton, “Two basic mechanisms in insect wing folding,”
Proc. Roy. Soc. B, Biol. Sci., vol. 263, no. 1377, pp. 1651–1658, Dec. 1996.

[10] T. Eisner, “Leaf folding in a sensitive plant: A defensive thorn-exposure
mechanism?” Proc. Nat. Acad. Sci., vol. 78, no. 1, pp. 402–404, Jan. 1981.

[11] H. Kobayashi, B. Kresling, and J. F. V. Vincent, “The geometry of un-
folding tree leaves,” Proc. Roy. Soc. B, Biol. Sci., vol. 265, no. 1391,
pp. 147–154, Jan. 1998.

[12] M. Karplus and D. L. Weaver, “Protein-folding dynamics,” Nature,
vol. 260, no. 5, pp. 404–406, Apr. 1976.

[13] E. Hawkes et al., “Programmable matter by folding,” Proc. Nat. Acad.
Sci., vol. 13, pp. 12 441–12 445, Jun. 2010.

[14] A. Firouzeh, Y. Sun, H. Lee, and J. Paik, “Sensor and actuator integrated
low-profile robotic origami,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2013, pp. 4937–4944.

[15] B. An and D. Rus, “Designing and programming self-folding sheets,”
Robot. Auton. Syst., vol. 62, no. 7, pp. 976–1001, Jul. 2014.

[16] B. An, N. Benbernou, E. D. Demaine, and D. Rus, “Planning to fold
multiple objects from a single self-folding sheet,” Robotica, vol. 29, no. 01,
pp. 87–102, Jan. 2011.

[17] S. Felton, M. Tolley, E. Demaine, D. Rus, and R. Wood, “A method for
building self-folding machines,” Science, vol. 345, no. 6, pp. 644–646,
Aug. 2014.

[18] S. M. Felton, M. T. Tolley, C. D. Onal, D. Rus, and R. J. Wood, “Robot
self-assembly by folding: A printed inchworm robot,” in Proc. IEEE Int.
Conf. Robot. Autom., 2013, pp. 277–282.

[19] S. Miyashita, S. Guitron, M. Ludersdorfer, C. R. Sung, and D. Rus, “An
untethered miniature origami robot that self-folds, walks, swims, and
degrades,” in Proc. IEEE Int. Conf. Robot. Autom., 2015, pp. 1490–1496.

[20] S. Miyashita, L. Meeker, M. Gouldi, Y. Kawahara, and D. Rus, “Self-
folding printable elastic electric devices: Resistor, capacitor, and inductor,”
in Proc. IEEE Int. Conf. Robot. Autom., 2014, pp. 1446–1453.

[21] K. Malachowski, M. Jamal, Q. Jin, B. Polat, C. J. Morris, and D. H.
Gracias, “Self-folding single cell grippers,” Nano Lett., vol. 14, no. 7,
pp. 4164–4170, Jul. 2014.

[22] B. An et al.,“An end-to-end approach to making self-folded 3D surface
shapes by uniform heating,” in Proc. IEEE Int. Conf. Robot. Autom., 2014,
pp. 1466–1473.

[23] N. M. Benbernou, E. D. Demaine, M. L. Demaine, and A. Ovadya, “Uni-
versal hinge patterns to fold orthogonal shapes,” in Proc. 5th Int. Conf.
Origami Sci. Math. Edu., Jul. 13–17, 2010, pp. 405–420.

[24] E. D. Demaine and J. O’Rourke, Geometric Folding Algorithms (Series
Linkages, Origami, Polyhedra). Cambridge, U.K.: Cambridge Univ. Press,
Aug. 2008.

[25] T. Tachi, “Origamizing polyhedral surfaces,” IEEE Trans. Vis. Comput.
Graph., vol. 16, no. 2, pp. 298–311, Mar. 2010.

[26] E. D. Demaine, S. L. Devadoss, J. S. B. Mitchell, and J. O’Rourke, “Con-
tinuous foldability of polygonal paper,” in Proc. 16th Can. Conf. Comput.
Geometry, 2004, pp. 64–67.

[27] E. Demaine, M. Demaine, and J. Ku, “Folding any orthogonal maze,” in
Origami 5. Boca Raton, FL, USA: CRC Press, Nov. 2011, pp. 449–454.

[28] E. Demaine, S. Fekete, and R. Lang, “Circle packing for origami design
is hard,” in Origami 5. Boca Raton, FL, USA: CRC Press, Nov. 2011,
pp. 609–626.

[29] C. Sung, E. D. Demaine, M. L. Demaine, and D. Rus, “Edge-compositions
of 3d surfaces,” J. Mech. Des., vol. 135, no. 11, Nov. 2013, Art. no. 111001.

[30] M. W. Bern and B. Hayes, “The complexity of flat origami,” in Proc. 7th
Annu. ACM-SIAM Symp. Discrete Algorithms, 1996, pp. 175–183.

[31] L. Ionov, “Soft microorigami: Self-folding polymer films,” Soft Matter,
vol. 7, no. 15, pp. 6786–6791, 2011.

[32] Y. W. Yi and C. Liu, “Magnetic actuation of hinged microstructures,” J.
Microelectromech. Syst., vol. 8, no. 1, pp. 10–17, Mar. 1999.

[33] S. M. Felton, M. T. Tolley, and R. J. Wood, “Mechanically programmed
self-folding at the millimeter scale,” in Proc. IEEE Int. Conf. Autom. Sci.
Eng., 2014, pp. 1232–1237.

[34] S. M. Felton et al., “Self-folding with shape memory composites,” Soft
Matter, vol. 9, no. 32, pp. 7688–7694, 2013.

[35] S. Miyashita, C. D. Onal, and D. Rus, “Self-pop-up cylindrical structure
by global heating,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2013,
pp. 4065–4071.

[36] M. T. Tolley, S. M. Felton, S. Miyashita, D. Aukes, D. Rus, and R. J. Wood,
“Self-folding origami: Shape memory composites activated by uniform
heating,” Smart Mater. Struct., vol. 23, no. 9, 2014, Art. no. 094006.

[37] Y. Liu, J. K. Boyles, J. Genzer, and M. D. Dickey, “Self-folding of polymer
sheets using local light absorption,” Soft Matter, vol. 8, no. 6, pp. 1764–
1769, 2012.

[38] K. Kuribayashi-Shigetomi, H. Onoe, and S. Takeuchi, “Cell Origami:
Self-folding of three-dimensional cell-laden microstructures driven by
cell traction force,” PLoS ONE, vol. 7, Dec. 2012, Art. no. 51085.

[39] T. G. Leong, P. A. Lester, T. L. Koh, E. K. Call, and D. H. Gracias,
“Surface tension-driven self-folding polyhedra,” Langmuir, vol. 23, no. 17,
pp. 8747–8751, Aug. 2007.

[40] K. Yasu and M. Inami, “POPAPY: Instant paper craft made up in a mi-
crowave oven,” in Advances in Computer Entertainment. Berlin, Germany:
Springer, 2012, pp. 406–420.

[41] Q. Ge, C. K. Dunn, H. J. Qi, and M. L. Dunn, “Active origami by 4D
printing,” Smart Mater. Struct., vol. 23, no. 9, Sep. 2014, Art. no. 094007.

[42] Y. Mao, K. Yu, M. S. Isakov, J. Wu, M. L. Dunn, and H. Jerry Qi,
“Sequential self-folding structures by 3d printed digital shape memory
polymers,” Sci. Rep., vol. 5, 2015, Art. no. 13616. [Online]. Available:
http://www.nature.com/articles/srep13616

[43] P. Sitthi-Amorn et al., “MultiFab: A machine vision assisted platform for
multi-material 3D printing,” ACM Trans. Graph., vol. 34, no. 4, pp. 129–
129:11, 2015.

[44] T. Tachi, “Origamizing polyhedral surfaces,” IEEE Trans. Vis. Comput.
Graph., vol. 16, no. 2, pp. 298–311, Mar. 2010. [Online]. Available:
https://doi.org/10.1109/TVCG.2009.67

[45] S. Takahashi, H.-Y. Wu, S. H. Saw, C.-C. Lin, and H.-C. Yen, “Optimized
topological surgery for unfolding 3d meshes,” Comput. Graph. Forum,
vol. 30, no. 7, pp. 2077–2086, Nov. 2011.

[46] T. Tachi, “Simulation of rigid origami,” in Origami 4. Boca Raton, FL,
USA: CRC Press, Apr. 2011, pp. 175–187.

[47] M. Bern, E. D. Demaine, D. Eppstein, E. Kuo, A. Mantler, and J. Snoeyink,
“Ununfoldable polyhedra with convex faces,” Comput. Geom., vol. 24,
no. 2, pp. 51–62, Feb. 2003.

[48] R. C. Prim, “Shortest connection networks and some generalizations,”
Bell Syst. Tech. J., vol. 36, no. 6, pp. 1389–1401, 1957.

[49] E. D. Demaine and J. O’Rourke, “Flattening polyhedra,” in Geometric
Folding Algorithms. Cambridge, U.K.: Cambridge Univ. Press, 2010,
pp. 279–284.

Byoungkwon An received the B.Sc. degree in
physics from Soongsil University, Seoul, South Ko-
rea, in 2004 and the M.Sc. degree in computer sci-
ence from the Massachusetts Institute of Technology,
Cambridge, MA, USA, in 2011.

He is interested in algorithms, computation, and
computational geometry, including computational
self-assembly of biological molecular and artifi-
cial programmable matter, computational origami,
origami computing, and distributed systems and
robotics.

Shuhei Miyashita (M’11) received the Ph.D. degree
in mathematics and natural science from the Univer-
sity of Zurich, Zurich, Switzerland, in 2011.

He is currently a Lecturer at the University of
York, York, U.K. Prior to this position, he was a Post-
doctoral Research Associate at the Massachusetts In-
stitute of Technology, Cambridge, MA, USA, and
Carnegie Mellon University, Pittsburgh, PA, USA.
His research interests include self-assembly, mi-
crorobotics, self-reconfigurable systems, biomedical
robotics, and origin of life.

1424 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 6, DECEMBER 2018

Aaron Ong (S’15) received the B.Sc. degree in
biomedical engineering from the University of
California, San Diego, CA, USA, in 2018. He is
currently working toward the M.Eng. degree in me-
chanical engineering at the University of California,
Berkeley, CA, USA.

From 2015 to 2018, he was involved in research at
the Bioinspired Robotics and Design Lab and worked
on self-folding and soft robots. Previously, he was a
mechanical design intern with Tesla Inc., Palo Alto,
CA, USA and a research intern with the Harvard Mi-

crorobotics Lab, Cambridge, MA, USA. His current research interests include
design, manufacturing, and assembly of bioinspired systems.

Michael T. Tolley (S’09–M’11) received the B.Eng.
degree in mechanical engineering from McGill Uni-
versity, Montreal, QC, Canada, in 2005, and the M.S.
and Ph.D. degrees in mechanical engineering with a
minor in computer science from Cornell University,
Ithaca, NY, USA, in 2009 and 2011, respectively.

He was a Postdoctoral Associate at the
Harvard Microrobotics Lab and the Wyss Institute
for Biologically Inspired Engineering, Harvard Uni-
versity, Boston, MA, USA, from 2011 to 2014. He is
currently an Assistant Professor of Mechanical Engi-

neering and Materials Science, and the Founder and Director of the Bioinspired
Robotics and Design Lab, University of California, San Diego, CA, USA. His
research focuses on the design, rapid fabrication, and control of biologically
inspired robotics, with topics including actuation for soft bodied robots, soft
sensors, origami-inspired fabrication, and autonomous self-assembly.

Dr. Tolley received the Young Investigator Program Award from the US
Office of Naval Research, and the Nontenured Faculty Award from the 3M
Company.

Martin L. Demaine is an Artist and Mathematician.
He started the first private hot glass studio in Canada
and has been called the father of Canadian glass.
Since 2005, he has been the Angelika and Barton
Weller Artist-in-Residence with the Massachusetts
Institute of Technology, Cambridge, MA, USA. He
works in paper, glass, and other material. He uses
his exploration in sculpture to help visualize and un-
derstand unsolved problems in mathematics, and his
scientific abilities to inspire new art forms. His artis-
tic work includes curved origami sculptures in the

permanent collections of the Museum of Modern Art (MoMA) in New York,
and the Renwick Gallery in the Smithsonian. His scientific work includes more
than 60 published joint papers, including several about combining mathematics
and art.

Erik D. Demaine received the B.Sc. degree from
Dalhousie University, Halifax, NS, Canada, in 1995,
and the M.Math. and Ph.D. degrees in computer sci-
ence from the University of Waterloo, Waterloo, ON,
Canada, in 1996 and 2001, respectively.

Since 2001, he has been a Professor of Computer
Science at the Massachusetts Institute of Technology,
Cambridge, MA, USA. His research interests range
throughout algorithms, from data structures for im-
proving web searches to the geometry of understand-
ing how proteins fold to the computational difficulty

of playing games. In 2003, he received a MacArthur Fellowship as a “compu-
tational geometer tackling and solving difficult problems related to folding and
bending—moving readily between the theoretical and the playful, with a keen
eye to revealing the former in the latter.” He co-authored a book about the the-
ory of folding, together with Joseph O’Rourke Geometric Folding Algorithms
(Cambridge University Press, 2007), and a book about the computational com-
plexity of games, together with Robert Hearn Games, Puzzles, and Computation
(Boca Raton, FL, USA: CRC Press, 2009).

Robert J. Wood (M’01–SM’16) received the M.S.
and Ph.D. degrees from the Department of Electri-
cal Engineering and Computer Sciences, University
of California, Berkeley, Berkeley, CA, USA, in 2001
and 2004, respectively.

He is currently the Charles River Professor of En-
gineering and Applied Sciences at the Harvard John
A. Paulson School of Engineering and Applied Sci-
ences, a Founding Core Faculty Member of the Wyss
Institute for Biologically Inspired Engineering at
Harvard, Harvard University, Cambridge, MA, USA,

and a National Geographic Explorer. His current research interests include mi-
crorobotics, soft and wearable robots, and bioinspired robotics.

Daniela Rus (F’16) received the Ph.D. degree in
computer science from Cornell University, Ithaca,
NY, USA, in 1993.

She is the Andrew (1956) and Erna Viterbi Profes-
sor of Electrical Engineering and Computer Science
and the Director of the Computer Science and Artifi-
cial Intelligence Laboratory, Massachusetts Institute
of Technology (MIT), Cambridge, MA, USA. Prior
to joining MIT, she was a Professor at the Computer
Science Department, Dartmouth College, Hanover,
NH, USA. Her research interests include robotics,

mobile computing, and data science.
Dr. Rus is a Class of 2002 MacArthur Fellow, a Fellow of ACM and AAAI,

and a member of the National Academy of Engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

